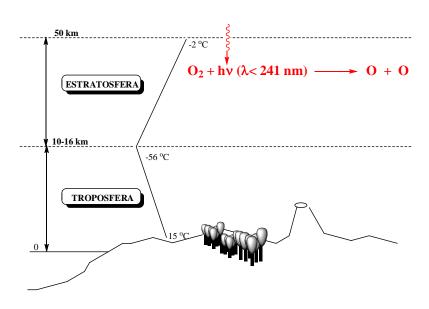


MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Ouro Preto Programa de Pós-Graduação em Engenharia Ambiental – PROAMB

Prova de Seleção ProAmb – Mestrado 2020 20/11/2019

Instruções aos candidatos:

- (1) O candidato que assinar a prova ou que se identificar de qualquer maneira será desclassificado.
- (2) Preencher o número de inscrição no campo indicado em todas as folhas.
- (3) Usar caneta preta ou azul.


MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Ouro Preto Programa de Pós-Graduação em Engenharia Ambiental – PROAMB

QUESTÃO 01

Explique o processo de formação e a destruição não-catalítica do ozônio na atmosfera.

Resposta:

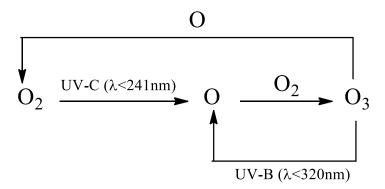
Uma pequena quantidade de UV (120-220 nm) passa a termosfera e mesosfera, atingindo a alta estratosfera, e produz oxigênio atômico.

O oxigênio atômico reage na estratosfera com oxigênio molecular para produzir o ozônio. O ozônio produzido absorve UV-C e UV-B (220 nm< λ < 320 nm) e sofre decomposição para formar oxigênio molecular e oxigênio atômico excitados.

$$O_2 + O + M \longrightarrow O_3 + (M + calor)$$
 $M=N_2$
 $O_3 + hv (220-320 nm) \longrightarrow O_2^* + O_3^*$

a maioria dos O_3^*
 $O_2 + O_3^* \longrightarrow O_3^*$

alguns dos O_3^*
 $O_3 + O_3^* \longrightarrow O_2^*$



MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Ouro Preto Programa de Pós-Graduação em Engenharia Ambiental – PROAMB

RESUMO DA CRIAÇÃO E DESTRUIÇÃO NÃO CATALÍTICA DO OZÔNIO NA ESTRATOSFERA:

Ciclo de Chapman

MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Ouro Preto Programa de Pós-Graduação em Engenharia Ambiental – PROAMB

QUESTÃO 02

A avaliação dos impactos ambientais associados a uma atividade deve ser conduzida com critérios científico e metodológico, de modo a assegurar a relevância das informações apresentadas aos tomadores de decisão. Com base nos seus conhecimentos acerca dos Métodos para Avaliação de Impactos, explique o que há de errado com as seguintes afirmações:

 a) (25% do valor da questão) Os métodos ad hoc envolvem a consulta a especialista para a formulação de questões relevantes, que podem sistematizar suas observações de diferentes modos como empregando o Método Delphi.

[Resposta] O candidato deve explicar que o método ad hoc envolve a identificação prévia de questões relevantes para posterior encaminhamento a especialistas, que podem sistematizar suas observações de diferentes modos como empregando o Método Delphi- que é uma série de questionários aplicados de modo consecutivo até que se alcance consenso entre os especialistas em torno da questão em pauta.

A resposta para essa pergunta se encontra no Capitulo 29 – Análise de viabilidade ambiental – página 752 do livro Engenharia Ambiental – Conceitos, Tecnologia e Gestão.

b) (25% do valor da questão) As matrizes de impacto são basicamente quadros unidimensionais de impactos normalmente associados a certas tipologias de empreendimentos ou de fatores ambientais potencialmente afetados.

[Resposta] O candidato deve explicar que a descrição dada não é do método "matriz de impacto", mas sim do método "listagem de controle" e/ou deve explicar que matrizes de impacto são quadros bidimensionais de informação que dispõem, em seus eixos, os fatores ambientais afetados e as ações indutoras de impactos, compostas por elementos (atributos) que qualificam os efeitos prováveis sobre o meio: presença e/ou ausência do impacto, magnitude, abrangência e importância.

A resposta para essa pergunta se encontra no Capitulo 29 – Análise de viabilidade ambiental – página 752 do livro Engenharia Ambiental – Conceitos, Tecnologia e Gestão.

MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Ouro Preto

Programa de Pós-Graduação em Engenharia Ambiental – PROAMB

(25% do valor da questão) As abordagens para sobreposição de mapas podem variar entre a combinação de restrições e o estabelecimento de níveis de aptidão para a ocupação do território, porém essa metodologia ainda não incorpora o uso dos Sistemas de Informações Geográficas.

[Resposta] O candidato deve explicar que as abordagens para sobreposição de mapas podem variar entre a combinação de restrições e o estabelecimento de níveis de aptidão para a ocupação do território, cujas metodologias vêm sendo aprimoradas com o uso dos Sistemas de Informações Geográficas.

A resposta para essa pergunta se encontra no Capitulo 29 – Análise de viabilidade ambiental – páginas 755-756 do livro Engenharia Ambiental – Conceitos, Tecnologia e Gestão.

d) (25% do valor da questão) Uma vez que os modelos matemáticos são baseados em equações matemáticas, normalmente elaboradas a partir de postulados e leis científicas, nunca há grau de incerteza associado à aplicação dos modelos e, consequentemente, aos resultados obtidos.

e)

[Resposta] O candidato poderá iniciar a explicação dizendo que realmente os modelos matemáticos são baseados em postulados e leis científicas ou análise estatística de experimentos. No entanto, se o modelo foi criado utilizando relações probabilísticas (que descrevem o grau de probabilidade de ocorrência de certo evento dado o número e a probabilidade de ocorrência de certo número de eventos), há grau de incerteza associado à aplicação dos modelos e, consequentemente, aos resultados obtidos.

A resposta para essa pergunta se encontra no Capitulo 29 – Análise de viabilidade ambiental – página 758 do livro Engenharia Ambiental – Conceitos, Tecnologia e Gestão.

MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Ouro Preto Programa de Pós-Graduação em Engenharia Ambiental – PROAMB

QUESTÃO 02

MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Ouro Preto Programa de Pós-Graduação em Engenharia Ambiental – PROAMB

QUESTÃO 03

Uma cervejaria que produz 20 m³ de cerveja ao dia está ao lado de um matadouro que abate 400 cabeças de gado e 600 porcos por dia. Os efluentes produzidos são unidos antes de serem lançados em um rio (Classe 2), sem qualquer tratamento. Estimar as características (letras "a" a "d") do efluente produzido por estas duas empresas. Para isto utilize o Quadro 2.28, retirado de uma das referências bibliográficas indicadas no edital. Responder também a letra "e"; para isto o formulário apresentado pode ser utilizado.

Informações:

1.

Contribuição per capta de DBO (Demanda Bioquímica de Oxigênio) de 54 g hab-1 dia-1; Vazão do rio = 9,3 L s-1; Oxigênio Dissolvido (OD) no rio = 7,0 mg L-1; Concentração de coliformes termotolerantes no rio = 103 NMP-1100mL-1; Limite de OD para rios Classe 2 de acordo com a Resolução CONAMA 357/2005 = 5 mg L-1

- a) carga de DBO;
- b) o equivalente populacional;
- c) vazão de esgotos;
- d) concentração de DBO nos esgotos.

MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Ouro Preto

Quadro 2.28. Características das águas residuárias de algumas indústrias

Gênero	Tipo	Unidade de produção	Vazão específica de esgotos (m ³ /unid)	Carga específica de DBO (kg/unid)
Alimentícia	Conservas (frutas/legumes)	1 t processada	4 - 50	10 - 30
	Processamento da ervilha	1 t processada	13 - 18	16 - 20
	Processamento de tomate	1 t processada	4-8	1-4
	Processamento da cenoura	1 t processada	11	18
	Processamento da batata	1 t processada	7,5 - 16	10 - 25
	Processamento de citrus	1 t processada	9	3
	Processam, de carne de frango	1 t produzida	15 - 60	4-30
	Processamento de carne de boi	1 t processada	10 - 16	1 – 24
	Processamento de pescado	1 t processada	5 - 35	3-55
	Doces	1 t produzida	5-25	2-8
	Acúcar de cana	1 t produzida	0,5 - 10,0	2.5
	Laticínio sem queijaria	1000 L leite	1 - 10	1-5
	Laticinio com queijaria	1000 L leite	2 - 10	5 – 40
*	Margarina	1 t produzida	20	30
	Matadouros	1boi/2,5porcos	0,5-3	0,5 - 5
	Produção de levedura	1 t produzida	150	1100
Criatórios de animais	Suinos	t viva.d	0,2	2
confinados	Vacas leiteiras (sala de ordenha)	t viva.d	0,02 - 0,08	0.05 - 0.10
Commados	Bovinos	t viva.d	0.15	1,6
	Egűinos	t viva.d	0.15	4-8
	Ovinos	t viva.d	0,38	0,9
Sucroalcooleira	Destilação de álcool	1 t cana processada	60	220
Bebidas	Cervejaria	1 m³ produzido	2-10	8-20
	Refrigerantes	1 m ³ produzido	2-5	3-6
	Vinho	1 m³ produzido	5	0.25
Têxtil	Algodão	1 t produzida	120 - 750	150
	Lã	1 t produzida	500 600	200-300
	Rayon	1 t produzida	25 - 60	30
	Nylon	1 t produzida	100 - 150	45
	Polyester	1 t produzida	60 - 130	185
	Lavanderia de lä	1 t produzida	20 - 70	100 - 250
	Tinturaria	1 t produzida	20 - 60	100 - 200
	Alvejamento de tecidos	1 t produzida		16
Couro e curtume	Curtume	1 t pele processada	20 - 40	20 - 150
	Sapatos	1000 pares produzidos	5	15
Polpa e papel	Fabric. de polpa sulfatada	1 t processada	15 - 265	30
	Fabricação de papel	1 t processada	30 - 270	10
	Polpa e papel integrados	1 t processada	200 - 250	60 - 500
Indústria química	Tinta	1 empregado	0.110	
	Sabão	1 t produzida	25 - 200	50
	Refinaria de petróleo	1 barril (117 I)	0.2 - 0.4	0.05
	PVC	1 t produzida	12.5	10
Indústria não-metálica	Vidro e subprodutos	1 t produzida	50	
	Cimento (processo seco)	1 t produzida	5	
A		1 t gusa produzida	3-8	0.6 - 1.6
Siderúrgica	Fundição	1 t gusa produzida 1 t produzida	8-50	0.4 - 2.7
	Laminação	i i produziua	0-00	U.4 - E.1

MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Ouro Preto Programa de Pós-Graduação em Engenharia Ambiental – PROAMB

QUESTÃO 03

Resposta

Para todas as características é apresentada uma faixa possível de respostas, porque o Quadro 2.28 oferece mais de uma alternativa para o candidato. Foram consideradas, portanto, para as estimativas os menores e maiores valores de vazão específica e de carga específica de DBO.

- a) Carga de DBO de 480 a 3600 kg dia-1.
- b) Equivalente populacional de 8889 a 66667 habitantes.
- c) Vazão de esgotos de 360 a 3400 m³ dia⁻¹.
- d) Concentração de DBO nos esgotos de 1059 a 1333 mg L⁻¹.

MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Ouro Preto Programa de Pós-Graduação em Engenharia Ambiental – PROAMB

QUESTÃO 04

Os dados a seguir foram obtidos a partir da análise de sólidos de uma amostra de água residuária:

Sólidos totais = 6000 mg.L⁻¹ Sólidos suspensos = 1500 mg.L⁻¹ Sólidos dissolvidos = ? Sólidos suspensos voláteis = ? Sólidos suspensos fixos = 600 mg.L⁻¹ Sólidos dissolvidos voláteis = 200 mg.L⁻¹ Sólidos dissolvidos fixos = ?

Determine os dados de caracterização que estão faltando e avalie se o efluente em questão possui uma característica mais orgânica ou inorgânica. Qual das frações suspensa ou dissolvida teria maior chance de ser biodegradada? Justifique sua resposta.

MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Ouro Preto Programa de Pós-Graduação em Engenharia Ambiental – PROAMB

QUESTÃO 04

Resposta

Na presente questão o estudante deve demonstrar seu conhecimento em caracterização de águas residuárias. A questão pode se resolvida com o conhecimento apresentado no capítulo de qualidade de água do livro texto Introdução à Engenharia Ambiental.

ST = SST + SDT

SDT = SDF + SDV

SST = SSF + SSV

De acordo com as equações de balanço de sólidos apresentado acima, os valores de SD= 4500 mg/L, SSV= 900 mg/L e SDF= 4300 mg/L, parâmetros que estavam faltando poderiam ser calculados facilmente.

A amostra em questão possui uma característica mais inorgânica, uma vez que 81,66% dos sólidos totais encontram-se na sua forma fixa (SDF + SSF), ou seja, esta fração não foi capaz de volatilizar quando a amostra foi submetida a um aquecimento em 548° C \pm 2 em mufla por 2 horas, indicando que a mesma representa a fração inorgânica da amostra.

A fração de sólidos suspensos desta amostra possui maior chance de ser biodegradado, pois, aproximadamente 60% dos sólidos suspensos se encontram na forma volátil, ou seja, uma fração orgânica e consequentemente mais passível de ser biodegradada. Este valor é muito superior quando comparado a quantidade de compostos orgânicos na fração dissolvida (SDV), o qual representa somente 4,44% dos sólidos dissolvidos totais. Isto indica que a fração de sólidos dissolvidos apresenta predominância de sólidos fixos, ou seja, inorgânicos e de mais difícil biodegradação.